Definition: Multiplicative Functions
An arithmetic function \(\beta\) with at least one \(m\in\mathbb N\) with \(\beta(m)\neq 0\) is called:
- multiplicative, \(\beta(mn)=\beta(m)\beta(n)\) for all relatively prime \(m,n\in\mathbb N\),
- multiplicative, \(\beta(mn)=\beta(m)\beta(n)\) for all relatively prime \(m,n\in\mathbb N\),
Table of Contents
Corollaries: 1 Examples: 1
Mentioned in:
Corollaries: 1
Examples: 2
Proofs: 3 4
Propositions: 5
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927