◀ ▲ ▶Branches / Number-theory / Proposition: Number of Multiples of a Given Number Less Than Another Number
Proposition: Number of Multiples of a Given Number Less Than Another Number
Let $0 < n < m$ be natural numbers. The number $k$ of the positive multiples of $n$ below $m,$ i.e. the numbers $n, 2n, 3n,\ldots,kn$ with $kn\le m$ is given by the floor function $k=\left\lfloor \frac mn\right\rfloor.$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Scheid Harald: "Zahlentheorie", Spektrum Akademischer Verlag, 2003, 3rd Edition
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927