Definition: Perfect Number

A perfect number is a natural number $n > 0$ which equals the sum of its proper divisors, formally:

\[n=\sum_{d\mid n} d - n\Longleftrightarrow n\text{ is perfect}.\]

Equivalently, if we allow the non-proper divisor $n\mid n$ to contribute to the sum of divisors, $n$ is perfect if and only if the sum of all divisors equals $2n$, formally: $$2n=\sum_{d\mid n}d\Longleftrightarrow n\text{ is perfect}.$$

Examples

Definitions: 1
Problems: 2 3
Proofs: 4
Propositions: 5 6


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927