◀ ▲ ▶Branches / Number-theory / Corollary: Prime Dividing Product of Primes Implies Prime Divisor
Corollary: Prime Dividing Product of Primes Implies Prime Divisor
(related to Lemma: Generalized Euclidean Lemma)
Let \(p\) be a prime number dividing a product of prime numbers $n=\prod_{i=1}^\rho p_i.$ Then $p$ equals at least one of these prime numbers, i.e. $p=p_i$ for at least one $i\in\{1,\ldots,\rho\}.$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927