Lemma: Generalized Euclidean Lemma
Let \(p\) be a prime number dividing some number $n > 1$ being a product of of some other numbers $n=\prod_{i=1}^\rho n_i.$ Then $p$ divides at least one of the factors $n_i$, i.e. $p\mid n_i.$ Equivalently, if $p$ does not divide any of the factors of $n$, then it also does not divide $n.$
Table of Contents
Proofs: 1 Corollaries: 1
Mentioned in:
Proofs: 1 2
Propositions: 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927