◀ ▲ ▶Branches / Number-theory / Lemma: Reciprocity Law for Floor Functions
Lemma: Reciprocity Law for Floor Functions
Let $p,q\in\mathbb Z$ be odd and co-prime integers with $p > 2$ and $q > 2.$ Then the following closed formula for the sum of floor functions holds: $$\sum_{k=1}^{\frac{p-1}{2}}\left\lfloor\frac{kq}p\right\rfloor+\sum_{l=1}^{\frac{q-1}{2}}\left\lfloor\frac{lp}q\right\rfloor=\frac{p-1}{2}\cdot\frac{q-1}{2}.$$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927