Lemma: Reciprocity Law for Floor Functions

Let $p,q\in\mathbb Z$ be odd and co-prime integers with $p > 2$ and $q > 2.$ Then the following closed formula for the sum of floor functions holds: $$\sum_{k=1}^{\frac{p-1}{2}}\left\lfloor\frac{kq}p\right\rfloor+\sum_{l=1}^{\frac{q-1}{2}}\left\lfloor\frac{lp}q\right\rfloor=\frac{p-1}{2}\cdot\frac{q-1}{2}.$$

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Landau, Edmund: "Vorlesungen ├╝ber Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927