◀ ▲ ▶Branches / Number-theory / Definition: Subsets of Prime Numbers Not Dividing a Natural Number
Definition: Subsets of Prime Numbers Not Dividing a Natural Number
Let d\ge 0 be a natural number. By \mathbb P_d we denote the subset of prime numbers \mathbb P not dividing d. Formally
p\in \mathbb P_d\Longleftrightarrow p\not\mid d.
Examples
- \mathbb P_0=\emptyset, since all prime numbers divide 0 and therefore none do not divide 0.
- \mathbb P_1=\mathbb P, since all prime numbers do not divide 1,
- \mathbb P_p=\mathbb P\setminus\{p\} for any prime p, since all prime numbers except p do not divide p,
- \mathbb P_d=\mathbb P\setminus\{p:~p\mid d\} for any prime p which divides the number d.
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Piotrowski, Andreas: "Anmerkungen zur Verteilung der Primzahlzwillinge", Master’s thesis, Frankfurt am Main, 1999