Definition: Certain and Impossible Event
An event \(A\subseteq\Omega\) is called
* the certain event, if it contains all possible outcomes of \(\Omega\), i.e. if \(A=\Omega\), and it is called
* the impossible event, if it contains no elements of \(\Omega\), i.e. if \(A=\emptyset\).
Mentioned in:
Definitions: 1
Proofs: 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Bosch, Karl: "Elementare Einführung in die Wahrscheinlichkeitsrechnung", vieweg Studium, 1995, 6th Edition