Definition: Constant Function

Let \(A\) und \(B\) be sets and let \(c\in B\) be an element. A function \(f:A\mapsto B\) with \(f(x)=c\) for all $x\in A$ is called constant.

Examples: 1 2 3
Proofs: 4


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs
non-Github:
@Brenner


References

Adapted from CC BY-SA 3.0 Sources:

  1. Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück