Definition: Constant Function
Let \(A\) und \(B\) be sets and let \(c\in B\) be an element. A function \(f:A\mapsto B\) with \(f(x)=c\) for all $x\in A$ is called constant.
Mentioned in:
Examples: 1 2 3
Proofs: 4
Thank you to the contributors under CC BYSA 4.0!
 Github:

 nonGithub:
 @Brenner
References
Adapted from CC BYSA 3.0 Sources:
 Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück