Proof
(related to Proposition: Calculations with Uniformly Convergent Functions)
By hypothesis, $\mathbb F$ is either the field of real numbers or the field of complex numbers, let $D\subset \mathbb F.$ Let $f_n,g_n,f,g:D\to\mathbb F$ be functions, $\alpha_n,\alpha\in\mathbb F,$ and let $f_n\to f,$ $g_n\to g$ are uniformly convergent, and $(\alpha_n)_{n\in\mathbb N}$ be a sequence with the limit $\alpha_n\to \alpha.$
- Ad $f_n+g_n\to f+g$
- Ad $\alpha f_n\to \alpha f$
- Similarly, $||\alpha f_n-\alpha f||_\infty\le |\alpha|\cdot ||f_n-f||_\infty.$
- Again, using the criterion supremum norm and uniform convergence, from $f_n\to f$ and the above inequality oit follows
$$\lim_{n\to\infty}||(\alpha f_n-\alpha f)||_\infty=0.$$
- Thus $\alpha f_n\to \alpha f$ on $D.$
Now, assume that $f_n,g_n$ are bounded and that the sequence $\alpha_n$ is convergent to $\alpha.$
- We will first show that $f,g$ are bounded.
- By assumption $f_n,g_n$ are bounded for all $n\in\mathbb N.$
- By definition of bounded, there is a positive real number $B > 0$ such that $|f_n(x)| < B,$ $|g_n(x)| < B$ for all $n\in\mathbb N$ and all $x\in D.$
- By definition of supremum norms, this yieds
* $||f||_\infty < B$ and
* $||g||_\infty < B.$
- Define $\phi_n,\psi:D\to\mathbb N$ by $f_n=\phi_n+f$ and $g_n=\psi_n+g$ for all $n\in\mathbb N.$
- From the triangle inequality, it follows for the supremum norms $||f_n||_\infty\le ||\phi_n||_\infty + ||f||_\infty$ and $||g_n||_\infty\le ||\psi_n||_\infty + ||g||_\infty.$
- Note that since $f_n\to f$ and $g_n\to g$ uniformly, we have $\phi_n\to 0$ and $\psi\to 0$ uniformly.
- Therefore,
* $||f_n||_\infty\le 1 + ||f||_\infty$ and
* $||g_n||_\infty\le 1 + ||g||_\infty.$
- On the other hand, from the uniform convergence and the reverse triangle inequality it follows for $\epsilon = 1$ there is an index $N\in\mathbb N$ such that for all $x\in D$ and $n\ge N$
* $|f(x)|-|f_n(x)|\le \left||f(x)|-|f_n(x)|\right|\le |f(x)-f_n(x)| < 1$ and
* $|g(x)|-|g_n(x)|\le \left||g(x)|-|g_n(x)|\right|\le |g(x)-g_n(x)| < 1.$
- This yields for all $x\in D$ and $n\ge N$
* $|f(x)| < 1 + |f_n(x)|\le 1+||f_n||_\infty < 1+ B$ and
* $|g(x)| < 1 + |g_n(x)|\le 1+||g_n||_\infty < 1+ B$.
- It follows that $f,g$ are bounded on $D.$
- Ad $f_ng_n\to fg$
- Note that $f_ng_n-fg=(f_n-f)g_n+(g_n-g)f.$
- Therefore, $$\begin{array}{rcl}||f_ng_n-fg||_\infty&=&||(f_n-f)g_n+(g_n-g)f||_\infty\\
&\le&||(f_n-f)g_n||_\infty+||(g_n-g)f||_\infty\\
&\le&||(f_n-f)||_\infty||g_n||_\infty+||(g_n-g)||_\infty||f||_\infty\\
&\le&||(f_n-f)||_\infty B+||(g_n-g)||_\infty B.\\
\end{array}$$
- since $f_n\to f$ and $g_n\to g$ uniformly, we have $f_ng_n\to fg$ uniformly.
- Ad $\alpha_n f_n\to \alpha f$
- This follows from $f_ng_n\to fg$ as a special case for the constant functions $g_n(x)=:\alpha_n$ for all $x\in D.$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-