◀ ▲ ▶Branches / Set-theory / Lemma: Finite Cardinal Numbers and Set Operations
Lemma: Finite Cardinal Numbers and Set Operations
Let X, Y, U and W be finite sets. The following properties of cardinal numbers are fulfilled:
(1) From |X|=|Y|, |U|=|W| and X\cap U=\emptyset, Y\cap W=\emptyset it follows that |X\cup U|=|Y\cup W|=|X| + |U|=|Y| + |W|.
(2) From |X|=|Y| and |U|=|W| it follows that |X\times U|=|Y\times W|=|X|\cdot|U|=|Y|\cdot|W|.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Propositions: 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Ebbinghaus, H.-D.: "Einführung in die Mengenlehre", BI Wisschenschaftsverlag, 1994, 3th Edition