Proof
(related to Corollary: Justification of Set Union)
![axiomsunionsproof1](https://github.com/bookofproofs/bookofproofs.github.io/blob/main/_sources/_assets/images/examples/axiomsunionsproof1.png?raw=true)
![axiomsunionsproof2](https://github.com/bookofproofs/bookofproofs.github.io/blob/main/_sources/_assets/images/examples/axiomsunionsproof2.png?raw=true)
![axiomsunionsproof3](https://github.com/bookofproofs/bookofproofs.github.io/blob/main/_sources/_assets/images/examples/axiomsunionsproof3.png?raw=true)
![axiomsunionsproof4](https://github.com/bookofproofs/bookofproofs.github.io/blob/main/_sources/_assets/images/examples/axiomsunionsproof4.png?raw=true)
- By the axiom of separation there is a subset $Z^\dagger \subseteq Z^*$ containing exactly the elements of $A$ or the elements of $B.$, i.e. $Z^\dagger =\{z\mid z\in A\vee z\in B\}.$
![axiomsunionsproof5](https://github.com/bookofproofs/bookofproofs.github.io/blob/main/_sources/_assets/images/examples/axiomsunionsproof5.png?raw=true)
![axiomsunionsproof6a](https://github.com/bookofproofs/bookofproofs.github.io/blob/main/_sources/_assets/images/examples/axiomsunionsproof6a.png?raw=true)
∎
Thank you to the contributors under CC BY-SA 4.0!
![](https://github.com/bookofproofs/bookofproofs.github.io/blob/main/_sources/_assets/images/calendar-black.png?raw=true)
- Github:
-
![bookofproofs](https://github.com/bookofproofs.png?size=32)
References
Bibliography
- Ebbinghaus, H.-D.: "Einführung in die Mengenlehre", BI Wisschenschaftsverlag, 1994, 3th Edition
Footnotes