Proof
(related to Corollary: Justification of Set Union)




- By the axiom of separation there is a subset $Z^\dagger \subseteq Z^*$ containing exactly the elements of $A$ or the elements of $B.$, i.e. $Z^\dagger =\{z\mid z\in A\vee z\in B\}.$


∎
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Ebbinghaus, H.-D.: "Einführung in die Mengenlehre", BI Wisschenschaftsverlag, 1994, 3th Edition
Footnotes