Proof: By Contradiction
(related to Proposition: Partial Orders are Extensional)
- Let $(X,\preceq )$ be a poset.
- Assume that for $x,y\in X$ the following subsets of a given are equal: $\{z\mid z\preceq x\}=\{z\mid z\preceq y\}\quad( * ).$
- Assume that the partial order "$\preceq$" is not extensional.
- This means that $x\neq y.$
- Therefore, we have either $x\npreceq y$ or $y\npreceq x.$
- Therefore, we have either $x\not\in \{z\mid z\preceq y\}$ or $y\not\in \{z\mid z\preceq x\}.$
- This means by $( * )$ that either $x\not\in \{z\mid z\preceq x\}$ or $y\not\in \{z\mid z\preceq y\}.$
- This means that either $x\npreceq x$ or $y\npreceq y.$
- But this contradicts the reflexivity of the partial order $"\preceq".$
- Therefore, $x=y$ and "$\preceq$" is extensional.
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Hoffmann, D.: "Forcing, Eine Einführung in die Mathematik der Unabhängigkeitsbeweise", Hoffmann, D., 2018