Definition: Preorder, Partial Order and Poset

Let \(V\) be a set and let \([\preceq"\subseteq V\times V\) be a binary relation. We call \("\preceq "\)

A note on the notation $(V,\preceq )$

Because $V$ and "$\preceq$" are both sets, a poset $(V,\preceq )$ is nothing else than an ordered pair of two sets. This notation was established by Kuratowski.

Chapters: 1
Corollaries: 2
Definitions: 3 4 5 6 7 8 9
Examples: 10 11
Explanations: 12 13 14
Lemmas: 15
Proofs: 16 17 18 19 20 21
Propositions: 22 23 24 25 26


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001