◀ ▲ ▶Branches / Set-theory / Lemma: Properties of Ordinal Numbers
Lemma: Properties of Ordinal Numbers
If \(X\) is a set of ordinal numbers, then the "union":https://www.bookofproofs.org/branches/axiom-of-union-ernst/
\[\bigcup X:=\bigcup_{\alpha\in X} \alpha \] and the intersection of its elements
\[\bigcap X:=\bigcap_{\alpha\in X} \alpha \]
are also ordinal numbers.
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Hoffmann, Dirk W.: "Grenzen der Mathematik - Eine Reise durch die Kerngebiete der mathematischen Logik", Spektrum Akademischer Verlag, 2011