Lemma: Successor of Ordinal

Let \(\alpha\in\Omega\) be an ordinal number. Then the set \[s(\alpha):=\alpha\cup\{\alpha\}\] is again an ordinal number and is called the successor of \(\alpha\).

Proofs: 1

Definitions: 1 2
Explanations: 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Hoffmann, Dirk W.: "Grenzen der Mathematik - Eine Reise durch die Kerngebiete der mathematischen Logik", Spektrum Akademischer Verlag, 2011