Lemma: Successor of Ordinal
Let \(\alpha\in\Omega\) be an ordinal number. Then the set
\[s(\alpha):=\alpha\cup\{\alpha\}\]
is again an ordinal number and is called the successor of \(\alpha\).
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1 2
Explanations: 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Hoffmann, Dirk W.: "Grenzen der Mathematik - Eine Reise durch die Kerngebiete der mathematischen Logik", Spektrum Akademischer Verlag, 2011