Proposition: Uncountable and Countable Subsets of Natural Numbers

  1. The set $2^{\mathbb N}:=\{f\mid \mathbb N\to \{0,1\}\}$ of all[^1] [subsets]bookofproofs$552 of the natural numbers $\mathbb N$ is uncountable.
  2. The set $2^{\mathbb N}:=\{f\mid \mathbb N\to \{0,1\}\}$ of all[^1] [subsets]bookofproofs$552 of the natural numbers $\mathbb N$ is uncountable.

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983

Footnotes