◀ ▲ ▶Branches / Set-theory / Proposition: Uncountable and Countable Subsets of Natural Numbers
Proposition: Uncountable and Countable Subsets of Natural Numbers
- The set $2^{\mathbb N}:=\{f\mid \mathbb N\to \{0,1\}\}$ of all[^1] [subsets]bookofproofs$552 of the natural numbers $\mathbb N$ is uncountable.
- The set $2^{\mathbb N}:=\{f\mid \mathbb N\to \{0,1\}\}$ of all[^1] [subsets]bookofproofs$552 of the natural numbers $\mathbb N$ is uncountable.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
Footnotes