Let \(a,b\in\mathbb{Z}\) be positive integers $a,b\in\mathbb Z$ with \(a\le b\). The algorithm \(\operatorname{gcdext}(a,b)\) calculates correctly the greatest common divisor $d$ of \(a\) and \(b\) and integers $x,y\in\mathbb Z$ $x,y\in\mathbb Z$ such that $$d=ax+by.$$ It requires \(\mathcal O(\log |b|)\) (worst case and average case) division operations, which corresponds to \(\mathcal O(\log^2 |b|)\) bit operations.
Algorithm: Extended Greatest Common Divisor (Python)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | def gcdext(a, b):
if a <= 0:
raise TypeError("a <= 0")
if b <= 0:
raise TypeError("b <= 0")
x = 0
y = 1
u = 1
v = 0
q = a // b
r = a % b
while r != 0:
a = b
b = r
t = u
u = x
x = t - q * x
t = v
v = y
y = t - q * y
if b != 0:
q = a // b
r = a % b
d = b
return [d, x, y]
# Usage
print(gcdext(5159, 4823))
# will output
# [7, -244, 261], because 7 = -244*5159 + 261*4823
|
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Propositions: 2 3
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Hermann, D.: "Algorithmen Arbeitsbuch", Addison-Wesley Publishing Company, 1992
- Blömer, J.: "Lecture Notes Algorithmen in der Zahlentheorie", Goethe University Frankfurt, 1997