◀ ▲ ▶Branches / Topology / Proposition: Bijective Open Functions
Proposition: Bijective Open Functions
Let $(X,\mathcal O_X)$ and $(Y,\mathcal O_Y)$ be topological spaces. A bijective function $f:X\to Y$ is an open function if and only if its inverse function is continuous.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Steen, L.A.;Seebach J.A.Jr.: "Counterexamples in Topology", Dover Publications, Inc, 1970
- Jänich, Klaus: "Topologie", Springer, 2001, 7th Edition