◀ ▲ ▶Branches / Topology / Definition: Continuous Function
Definition: Continuous Function
Let $(X,\mathcal O_X)$ and $(Y,\mathcal O_Y)$ be topological spaces. A function $f:X\to Y$ is continuous if the inverse image $f^{-1}(B)$ of every open set $B$ in $Y$ is open in $X$, formally $$B\in\mathcal O_Y\Rightarrow f^{-1}(B)\in\mathcal O_X.$$
Mentioned in:
Definitions: 1 2
Examples: 3
Proofs: 4 5 6 7
Propositions: 8 9 10 11
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Steen, L.A.;Seebach J.A.Jr.: "Counterexamples in Topology", Dover Publications, Inc, 1970
- Jänich, Klaus: "Topologie", Springer, 2001, 7th Edition