◀ ▲ ▶Branches / Topology / Corollary: Every uniformly convergent sequence of functions is pointwise convergent.
Corollary: Every uniformly convergent sequence of functions is pointwise convergent.
(related to Definition: Pointwise and Uniform Convergence)
If a sequence of functions \((f_n)_{n\in\mathbb N}\) converges uniformly to a function \(f\), then it also converges pointwise to \(f\).
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
- Forster Otto: "Analysis 2, Differentialrechnung im \(\mathbb R^n\), Gewöhnliche Differentialgleichungen", Vieweg Studium, 1984