◀ ▲ ▶Branches / Topology / Proposition: Isometry is Injective
Proposition: Isometry is Injective
Let \((X,d_X)\) and \((Y,d_Y)\) be metric spaces and let
\[f:X\mapsto Y\]
be an isometry. Then \(f\) is injective.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001