Proposition: Maximum Norm as a Limit of p-Norms

Let $p$ be a real number $\ge 1$. Let $x=(x_1,x_2,\ldots x_n)$ be a vector of a vector space \(V\) over the field of real numbers \(\mathbb R\) or the field of complex numbers \(\mathbb C\).

The maximum norm.

$||x||_\infty:=\max(|x_1|,|x_2|,\ldots,|x_n|)$

is the limit of a p-norm for $p\to\infty,$ formally

$$||x||_\infty=\lim_{p\to\infty}||x||_p.$$

Proofs: 1

Definitions: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983