Definition: Topological Chart

Let \(U\subseteq M\) be a an open subset of a manifold \(M\) a let \(V\subseteq\mathbb R^{n}\) be an open subset of the \(n\)-dimensional metric space or real numbers \(\mathbb {R} ^{n}\).

Every homeomorphism \(\varphi \colon U\longrightarrow V\) is called a (topological) chart of \(M\).

Definitions: 1 2 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs
non-Github:
@Brenner


References

Adapted from CC BY-SA 3.0 Sources:

  1. Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück