Definition: Transition Map

Let \(M\) be a manifold and let \(U_{\alpha},U_{\beta}\subseteq M\) be its open subsets. Furthermore, let \(V_\alpha,V_\beta\subseteq\mathbb R^{n}\) be open subsets of the \(n\)-dimensional metric space or real numbers \(\mathbb {R} ^{n}\).

Consider two topological charts \(\varphi_{\alpha}\colon U_{\alpha}\rightarrow V_{\alpha}\) and \(\varphi_{\beta}\colon U_{\beta}\rightarrow V_{\beta}\). Then we call a composition of the homeomorphisms. \[\tau_{\alpha,\beta}:=\varphi_{\beta}\circ \varphi_{\alpha}^{-1}=V_{\alpha}\cap \varphi_{\alpha}(U_{\alpha}\cap U_{\beta})\longrightarrow V_{\beta}\cap \varphi_{\beta}(U_{\alpha}\cap U_{\beta}) \]

the transition map of the topological charts.

Note that since \(\varphi _{\alpha }\) and \(\varphi _{\beta }\) are both homeomorphisms, the transition map \(\tau _{\alpha ,\beta }\) is also a homeomorphism.

350px-Two_coordinate_charts_on_a_manifold

(picture by Stomatapoll, wikipedia)

Definitions: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs
non-Github:
@Brenner


References

Adapted from CC BY-SA 3.0 Sources:

  1. Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück