◀ ▲ ▶Branches / Algebra / Proposition: `$0$` Is Less Than `$1$` In Ordered Fields
Proposition: $0$ Is Less Than $1$ In Ordered Fields
In any ordered field $(F,+,\cdot),$ if $0\in F$ and $1\in F$, then $0 < 1.$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001