Definition: Ordered Field
We say a field $(F, +, \cdot)$ is ordered, if there exists a strict total order "$<$" on $F$ that fulfills the two properties:
- from \(a > b\) it follows \(a+c > b+c\) (for arbitrary \(c\in F\)),
- from \(a > 0\) and \(b > 0\) it follows \(a\cdot b > 0\).
We call
* $a > 0$ positive,
* $a < 0$ negative,
* $a\ge 0$ non-negative,
* $a\le 0$ non-positive.
Examples
- The field of rational numbers $(\mathbb Q,+,\cdot)$
- The field of real numbers $(\mathbb R,+,\cdot)$
Counterexamples
- The field of complex numbers $(\mathbb C,+,\cdot)$
- For a prime number $p,$ the finite field $(\mathbb Z_p,+,\cdot)$
Mentioned in:
Axioms: 1
Definitions: 2 3
Proofs: 4
Propositions: 5 6 7
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
- non-Github:
- @Brenner
References
Adapted from CC BY-SA 3.0 Sources:
- Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück