◀ ▲ ▶Branches / Algebra / Proposition: In a Field, `$0$` Is Unequal `$1$`
Proposition: In a Field, $0$ Is Unequal $1$
In any field $(F,+,\cdot)$, the elements $0\in F$ and $1\in F$ are not equal, formally $0\neq 1$.
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1
Proofs: 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001