In this chapter, we will introduce the field as a very important algebraic structure. Like it was the case in rings, a field has two different binary operations, usually referred to as "addition" and "multiplication". The following tabular overview indicates the properties of a field in comparison to previous algebraic structures:
Algebra $(X,\ast)$ | Closure | Associativity | Neutral Element | Existence of Inverse | Cancellation | Commutativity | Distributivity. |
---|---|---|---|---|---|---|---|
Magma | ✔ | (✔) | (✔) | (✔) | (✔) | (✔) | n/a |
Semigroup | ✔ | ✔ | (✔) | (✔) | (✔) | (✔) | n/a |
Monoid | ✔ | ✔ | ✔ | (✔) | (✔) | (✔) | n/a |
Group | ✔ | ✔ | ✔ | ✔ | ✔ | (✔) | n/a |
Ring $(R,\oplus,\odot)$ | $\oplus$ ✔, $\odot$ ✔ |
$\oplus$ ✔, $\odot$ ✔ |
$\oplus$ ✔, $\odot$ (✔) |
$\oplus$ ✔, $\odot$(✔) |
$\oplus$ ✔, $\odot$ (✔) |
$\oplus$ ✔, $\odot$ (✔) |
✔ |
Field $(F,\oplus,\odot)$ | $\oplus$ ✔, $\odot$ ✔ |
$\oplus$ ✔, $\odot$ ✔ |
$\oplus$ ✔, $\odot$ ✔ |
$\oplus$ ✔, $\odot$ ✔ |
$\oplus$ ✔, $\odot$ ✔ |
$\oplus$ ✔, $\odot$ ✔ |
✔ |
Examples: 1
Chapters: 1