Definition: Alternating Multilinear Map

Let \(F\) be a field and let \(V_{1},\ldots ,V_{n}\) and \(W\) be vector spaces over \(F\). A multilinear map. \[\Phi \colon V^{n}=\underbrace {V\times \cdots \times V} _{n-{\text{times}}}\longrightarrow W\,\]

is said to be alternating, if \(\Phi (v)=0,\) whenever in the tuple \(v=(v_{1},\ldots ,v_{n})\) to different entries are equal, i.e. \(v_{i}=v_{j}\) for a pair \(i\neq j\).


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs
non-Github:
@Brenner


References

Adapted from CC BY-SA 3.0 Sources:

  1. Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück