Let \(F\) be a field and let \(V_{1},\ldots ,V_{n}\) and \(W\) be vector spaces over \(F\). A map. \[\Phi \colon V_{1}\times \cdots \times V_{n}\longrightarrow W\,\]
is called a multilinear map, if for each \(i\in \{1,\ldots ,n\}\) and each \((n-1)\)-tuple \((v_{1},\ldots ,v_{i-1},v_{i+1},\ldots ,v_{n})\) with \(v_{j}\in V_{j}\), the induced map
\[V_{i}\longrightarrow W,\,v_{i}\longmapsto \Phi (v_{1},\ldots ,v_{i-1},v_{i},v_{i+1},\ldots ,v_{n})\,,\]
is a linear map over \(F\).
Definitions: 1