Lemma: Any Positive Characteristic Is a Prime Number

If a ring \((R, +,\cdot)\) with a multiplicative identity \(1\) and an additive identity \(0\) is free of zero divisors, then its characteristic \(\operatorname{char}( R )\) is either a prime number, or \(0\).

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013