◀ ▲ ▶Branches / Algebra / Lemma: Any Positive Characteristic Is a Prime Number
Lemma: Any Positive Characteristic Is a Prime Number
If a ring \((R, +,\cdot)\) with a multiplicative identity \(1\) and an additive identity \(0\) is free of zero divisors, then its characteristic \(\operatorname{char}( R )\) is either a prime number, or \(0\).
Table of Contents
Proofs: 1
Thank you to the contributors under CC BYSA 4.0!
 Github:

References
Bibliography
 Kramer Jürg, von Pippich, AnnaMaria: "Von den natürlichen Zahlen zu den Quaternionen", SpringerSpektrum, 2013