◀ ▲ ▶Branches / Algebra / Proposition: Characterization of Dependent Absolute Values
Proposition: Characterization of Dependent Absolute Values
Let $(F,+,\cdot)$ be a field with two absolute values $\cdot_1$ and $\cdot_2$ defined on it. If $\cdot_1$ and $\cdot_2$ are dependent, then there exists a positive real number $\lambda > 0$ such that $$x_1=x_y^\lambda$$
for all $x\in F$ with $x\neq 0.$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BYSA 4.0!
 Github:

References
Bibliography
 Lang, Serge: "Algebra  Graduate Texts in Mathematics", Springer, 2002, 3rd Edition