Proof
(related to Proposition: Characterization of Dependent Absolute Values)
- By hypothesis, $(F,+,\cdot)$ is a field with two absolute values $|\cdot|_1$ and $|\cdot|_2$ defined on it.
- Assume, $|\cdot|_1$ and $|\cdot|_2$ are dependent.
- Then for $x\in F$ we have $|x|_1 < 1\Longleftrightarrow |x|_2 < 1.$
- Let $x_0\in F$ with $|x_0|_1 > 1,$ then $|x_0|_2 > 1.$
- For an arbitrary $x\in F$ with $x\neq 0$, we have for some positive real number $\lambda > 0$ $$|x|_1=|x_0|_1^\lambda.$$
- For all real numbers $\epsilon > 0$ we get the approximations $$|x|_1^{\lambda-\epsilon} < |x_0|_1^\lambda< |x|_1^{\lambda+\epsilon},$$ implying $$\left|\frac{x^{\lambda-\epsilon}}{x_0^\lambda}\right|_1 < 1 < \left|\frac{x^{\lambda+\epsilon}}{x_0^\lambda}\right|_1.$$
- Since $|\cdot|_1$ and $|\cdot|_2$ are dependent, we get $$\left|\frac{x^{\lambda-\epsilon}}{x_0^\lambda}\right|_2 < 1 < \left|\frac{x^{\lambda+\epsilon}}{x_0^\lambda}\right|_2,$$ implying $$|x|_2^{\lambda-\epsilon} < |x_0|_2^\lambda< |x|_2^{\lambda+\epsilon}$$ for all $\epsilon > 0,$ implying
$$|x|_2^{\lambda} = |x_0|_2^\lambda.$$
- Obviously, $\lambda$ exists and is a positive real number.
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Lang, Serge: "Algebra - Graduate Texts in Mathematics", Springer, 2002, 3rd Edition