◀ ▲ ▶Branches / Algebra / Proposition: Characterization of Non-Archimedean Absolute Values
Proposition: Characterization of Non-Archimedean Absolute Values
- If $|\cdot|$ is a non-archimedean absolute value of a field $(F,+,\cdot)$, then $|n|\le 1$ for all multiples of $1\in F$, i.e. $$n=\underbrace{1+\ldots+1}_{n\text{ times}},\quad 1\in F.$$
- If $|\cdot|$ is a non-archimedean absolute value of a field $(F,+,\cdot)$, then $|n|\le 1$ for all multiples of $1\in F$, i.e. $$n=\underbrace{1+\ldots+1}_{n\text{ times}},\quad 1\in F.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-
