Proposition: Characterization of Non-Archimedean Absolute Values

  1. If $|\cdot|$ is a non-archimedean absolute value of a field $(F,+,\cdot)$, then $|n|\le 1$ for all multiples of $1\in F$, i.e. $$n=\underbrace{1+\ldots+1}_{n\text{ times}},\quad 1\in F.$$
  2. If $|\cdot|$ is a non-archimedean absolute value of a field $(F,+,\cdot)$, then $|n|\le 1$ for all multiples of $1\in F$, i.e. $$n=\underbrace{1+\ldots+1}_{n\text{ times}},\quad 1\in F.$$

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs