Proposition: Criterions for Equality of Principal Ideals

Two principal ideals $(a)$ and $(b)$ of an integral domain $(R, + ,\cdot)$ are equal, if and only if $a$ and $b$ are associates in $R,$ formally $$(a)=(b)\Longleftrightarrow a\sim b.$$

A principal ideal $(a)$ equals the zero ring, if and only if $a=0,$ formally $$(a)=(0)\Longleftrightarrow a=0.$$

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013