◀ ▲ ▶Branches / Algebra / Proposition: Criterions for Equality of Principal Ideals
Proposition: Criterions for Equality of Principal Ideals
Two principal ideals $(a)$ and $(b)$ of an integral domain $(R, + ,\cdot)$ are equal, if and only if $a$ and $b$ are associates in $R,$ formally $$(a)=(b)\Longleftrightarrow a\sim b.$$
A principal ideal $(a)$ equals the zero ring, if and only if $a=0,$ formally $$(a)=(0)\Longleftrightarrow a=0.$$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013