Definition: Zero Ring
A ring \((R, +,\cdot)\) is called a zero ring (or trivial ring), if
\[(R, +,\cdot)=(\{0\}, +,\cdot),\]
i.e. if it contains only the element \(0\).
Mentioned in:
Definitions: 1 2
Proofs: 3 4 5
Propositions: 6
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013