◀ ▲ ▶Branches / Algebra / Definition: Divisibility of Ideals
Definition: Divisibility of Ideals
Let $I\lhd R$ and $J\lhd R$ be two ideals of the ring $R$. Then we say that the ideal $I$ divides the ideal $J$ (or that $J$ is a multiple or that $J$ is divisible by $I$) - symbolically \(I \mid J\), if \(I\) is a superset of \( J \):
\[I \mid J\Longleftrightarrow I\supseteq J.\]
Mentioned in:
Lemmas: 1
Proofs: 2 3 4
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013