Proof
(related to Lemma: Divisibility of Principal Ideals)
"$\Rightarrow$"
"$\Leftarrow$"
- If, vice versa, \((i)\mid (j)\), we have the set inclusion \((j)\subseteq (i)\).
- Because \(j\in (j)\), it follows that \(j\in (i)\).
- Therefore, there exists an element \(x\in R\) with \(j=xi\).
- Thus, \(i\mid j\).
∎
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013