◀ ▲ ▶Branches / Algebra / Definition: Euclidean Ring, Generalization of Division With Quotient and Remainder
Definition: Euclidean Ring, Generalization of Division With Quotient and Remainder
An integral domain $(R,\cdot,+)$ is called an Euclidean ring, if there is a function, called the Euclidean function, mapping its non-zero elements to the set $\mathbb N$ of natural numbers $f:R\setminus\{0\}\to\mathbb N$ such that for any two elements $a,b\in R$ we have $$a=qb+r$$
with either $r=0$ ($0\in R$) or $f( r) < f(b).$
Notes
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013
- Koch, H.; Pieper, H.: "Zahlentheorie - Ausgewählte Methoden und Ergebnisse", Studienbücherei, 1976