◀ ▲ ▶Branches / Algebra / Lemma: Fiber of Maximal Ideals
Lemma: Fiber of Maximal Ideals
Let \(R\) and \(S\) be commutative rings and let \(\varphi :R\rightarrow S\) be a ring homomorphism. Further, let \(I\subseteq S\) be a maximal ideal in \(S\). Then the fiber \(\varphi ^{-1}(I)\subseteq R\) is not necessarily a maximal ideal.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
- non-Github:
- @Brenner
References
Adapted from CC BY-SA 3.0 Sources:
- Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück