Definition: Commutative (Unit) Ring

A commutative ring is a ring \((R, +,\cdot)\), in which the binary operation "\(\cdot\)" is commutative.

A commutative unit ring ring is a commutative ring \((R, +,\cdot)\) with a neutral element of the operation "\(\cdot\)".

"Unfolding" all definitions, a commutative ring fulfills the following axioms:

  1. Definition: Multiplicative System

Definitions: 1 2 3 4 5 6 7 8 9 10 11 12
Lemmas: 13 14 15 16 17
Proofs: 18 19 20 21
Propositions: 22 23 24


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs
non-Github:
@Brenner


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013

Adapted from CC BY-SA 3.0 Sources:

  1. Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück