◀ ▲ ▶Branches / Algebra / Lemma: Fiber of Prime Ideals Under a Spectrum Function
Lemma: Fiber of Prime Ideals Under a Spectrum Function
Let \(\varphi \colon R\longrightarrow S\,\) be a ring homomorphism between two commutative rings and let
\[\varphi ^{ * }\colon \cases{\operatorname {Spec} \left(S\right)\longrightarrow \operatorname {Spec} \left(R\right),\cr J\longmapsto \varphi ^{ * }(J)}\]
be the corresponding spectrum function. Then the fiber of a prime ideal \(I\in \operatorname {Spec} \left(R\right)\) under the spectrum function fulfills the following properties:
- It equals \(\operatorname {Spec} (S/IS)\).
- It equals \(\operatorname {Spec} (S/IS)\).
Table of Contents
Proofs: 1
- Lemma: Fiber of Prime Ideals
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
- non-Github:
- @Brenner
References
Adapted from CC BY-SA 3.0 Sources:
- Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück