Unfolding all definitions, a group $(G,\ast)$ fulfills the following properties:

Axiom: Axioms of Group

  1. closure: $x \ast y\in G$ for all $x,y\in G$.
  2. associativity: \((x\ast y)\ast z=x\ast (y\ast z)\,\).
  3. existence of neutral element: There is an element $e\in G$ with $e\ast x=x\ast e=x$ for all $x\in G$.
  4. existence of inverse: For all $x\in G$ there exists an $x^{-1}\in G$ with $x\ast x^{-1} =x^{-1}\ast x=e$.

Notes


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001
  2. Lang, Serge: "Algebra - Graduate Texts in Mathematics", Springer, 2002, 3rd Edition