Unfolding all definitions, a group $(G,\ast)$ fulfills the following properties:
Axiom: Axioms of Group
- closure: $x \ast y\in G$ for all $x,y\in G$.
- associativity: \((x\ast y)\ast z=x\ast (y\ast z)\,\).
- existence of neutral element: There is an element $e\in G$ with $e\ast x=x\ast e=x$ for all $x\in G$.
- existence of inverse: For all $x\in G$ there exists an $x^{-1}\in G$ with $x\ast x^{-1} =x^{-1}\ast x=e$.
Notes
- For technical reasons, these axioms are not minimal.
- It is also possible to define a group if we require only the existence of a left-neutral (respectively a right-neutral), and the existence of left-inverse (respectively a right-inverse) elements.
- The reader might encounter this approach in some sources.
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001
- Lang, Serge: "Algebra - Graduate Texts in Mathematics", Springer, 2002, 3rd Edition