Definition: Existence of a Neutral Element

Let \((X,\ast)\) be an algebraic structure. If $X$ has an element $e\in X$ with

If $e$ is both, left-neutral and right-neutral, then it is called neutral (or identity, or unit).

Notes

Axioms: 1 2
Chapters: 3 4 5 6
Definitions: 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Examples: 21 22 23
Explanations: 24 25
Lemmas: 26 27
Motivations: 28
Proofs: 29 30 31 32 33 34 35 36 37 38 39 40
Propositions: 41 42
Solutions: 43 44
Theorems: 45 46


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001