Lemma: Group Homomorphisms and Normal Subgroups

Let \(f:(G,\ast)\mapsto (H,\cdot)\) a group homomorphism. Then the kernel \(\ker(f)\) is a normal subgroup of \(G\), i.e. \(\ker(f)\unlhd G\).

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013