◀ ▲ ▶Branches / Algebra / Lemma: Group Homomorphisms and Normal Subgroups
Lemma: Group Homomorphisms and Normal Subgroups
Let \(f:(G,\ast)\mapsto (H,\cdot)\) a group homomorphism. Then the kernel \(\ker(f)\) is a normal subgroup of \(G\), i.e. \(\ker(f)\unlhd G\).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013