◀ ▲ ▶Branches / Algebra / Lemma: Kernel and Image of Group Homomorphism
Lemma: Kernel and Image of Group Homomorphism
Let \((G,\ast)\) and \((H,\cdot)\) be two groups with the respective identities \(e_G\) and \(e_H\) and \(f:G\rightarrow H\) be a group homomorphism.
We define:
The kernel and the image of $f$ fulfill the following defining properties:
- \(\ker(f)=\{e_G\}\) \(\Longleftrightarrow f\) is injective.
- \(\ker(f)=\{e_G\}\) \(\Longleftrightarrow f\) is injective.
Table of Contents
Proofs: 1
Mentioned in:
Explanations: 1
Lemmas: 2 3
Proofs: 4 5 6 7 8
Theorems: 9
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013