◀ ▲ ▶Branches / Algebra / Lemma: Kernel and Image of a Group Homomorphism are Subgroups
Lemma: Kernel and Image of a Group Homomorphism are Subgroups
Let \(f:(G,\ast)\mapsto (H,\cdot)\) a group homomorphism. Then it follows that
- The kernel \(\ker(f)\) is a subgroup of \(G\).
- The kernel \(\ker(f)\) is a subgroup of \(G\).
Table of Contents
Proofs: 1
Mentioned in:
Explanations: 1
Proofs: 2 3 4
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013