◀ ▲ ▶Branches / Algebra / Theorem: Order of Cyclic Group (Fermat's Little Theorem)
Theorem: Order of Cyclic Group (Fermat's Little Theorem)
Let \((G,\ast)\) be a cyclic group with a finite group order i.e. \(|G|=n < \infty,\) the neutral element \(e\in G\) and let $a\in G.$ Then:
- The order of the element $\operatorname{ord}(a)$ is a divisor of the group order $|G|.$
- The order of the element $\operatorname{ord}(a)$ is a divisor of the group order $|G|.$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013