Theorem: Order of Cyclic Group (Fermat's Little Theorem)

Let \((G,\ast)\) be a cyclic group with a finite group order i.e. \(|G|=n < \infty,\) the neutral element \(e\in G\) and let $a\in G.$ Then:

  1. The order of the element $\operatorname{ord}(a)$ is a divisor of the group order $|G|.$
  2. The order of the element $\operatorname{ord}(a)$ is a divisor of the group order $|G|.$

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013