Definition: Reduction of an Integer Polynomial Modulo a Prime Number

A polynomial reduced modulo a prime number $p$ is a polynomial $p(x)=a_{0}+a_{1}x+a_{2}x^{2}+\cdots+a_{n-1}x^{n-1}+a_nx^{n},$ over the ring of integers $\mathbb Z[X],$ in which all coefficients have been replaced by the congruence classes modulo a prime number $q$, i.e. the polynomial

$$p(x) \mod q:=a_{0}(p)+a_{1}x+a_{2}x^{2}+\cdots+a_{n-1}x^{n-1}+a_nx^{n}\mod q.$$

Definitions: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Scheid Harald: "Zahlentheorie", Spektrum Akademischer Verlag, 2003, 3rd Edition